Dr. Marko Rak

Senior Research Scientist

Faculty of Computer Science
Otto-von-Guericke University Magdeburg

Office: G82-161
Phone: ++49 391 67-52189
ed.ugvo.sc.gsi@kar :liaM-E

Research Interests

As a postdoctoral researcher, I am involved with the image analysis projects of our group. My research focuses on improving computer-assisted diagnosis, intervention and therapy tasks using state-of-the-art computer vision, image processing and machine learning techniques.

Studies that took place during my time in the VAR group are listed below. For a complete overview, including work outside of the group, please have a look at my profile on Google Scholar.


Scientific Publications

Bashkanov, O., Rak, M., Engelage, L., Hansen, C. (2024)
Augmenting Prostate MRI Dataset with Synthetic Volumetric Images from Zone-conditioned Diffusion Generative Model
MICCAI Workshop Deep Generative Models (DGM4MICCAI), accepted
 
Gulamhussene, G., Bashkanov, O., Omari, J., Pech, M., Hansen, C., Rak, M. (2023)
Using Training Samples as Transitive Information Bridges in Predicted 4D MRI
MICCAI Workshop on Medical Image Learning with noisy and Limited Data (MILLanD), pp. 237-245
Gulamhussene, G., Rak, M., Bashkanov, O., Joeres, F., Omari, J., Pech, M., Hansen, C. (2023)
Transfer-Learning is a Key Ingredient to Fast Deep Learning-Based 4D Liver MRI Reconstruction
Nature Scientific Reports, 13, pp. 11227
Bashkanov, O., Rak, M., Engelage, L., Lumiani, A., Muschter, R. Hansen, C. (2023)
Automatic Detection of Prostate Cancer Grades and Chronic Prostatitis in Biparametric MRI
Journal Computer Methods and Programs in Biomedicine, 239, pp. 107624
Bashkanov, O., Rak, M., Engelage, L., Hansen, C. (2023)
Automatic Patient-level Diagnosis of Prostate Disease with Fused 3D MRI and Tabular Clinical Data
Medical Imaging with Deep Learning (MIDL), pp. 128:1–14
Gulamhussene, G., Meyer, A., Rak, M., Bashkanov, O., Omari, J., Pech, M., Hansen, C. (2022)
Predicting 4D Liver MRI for MR-guided Interventions
Computerized Medical Imaging and Graphics, 101, pp. 102122
Download test data set 
Ernst, P. and Rak, M. and Hansen, C. and Rose, G. and Nuernberger, A. (2021)
Trajectory upsampling for sparse conebeam projections using convolutional neural networks
Proceedings of the 16th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (FULLY3D), Society of Photo-Optical Instrumentation Engineers (SPIE)
Meyer, A., Mehrtash, A., Rak, M., Bashkanov, O., Langbein, B., Ziaei, A., Kibel, A., Tempany, C., Hansen, C., Tokuda, J. (2021)
Domain Adaptation for Segmentation of Critical Structures for Prostate Cancer Therapy
Nature Scientific Reports, 11, pp. 11480
Wei, W., Haishan, X., Alpers, J., Rak, M., Hansen, C. (2021)
A Deep Learning Approach for 2D Ultrasound and 3D CT/MR Image Registration in Liver Tumor Ablation
Computer Methods and Programs in Biomedicine, 206, pp. 106117
Gulamhussene, G., Das, A., Spiegel, J., Punzet, D., Rak, M., Hansen, C. (2023)
Needle Tip Tracking during CT-guided Interventions using Fuzzy Segmentation
German Workshop on Medical Image Computing, pp. 285–291
Gulamhussene, G., Spiegel, J., Das, A., Rak, M., Hansen, C. (2023)
Deep Learning-based Marker-less Pose Estimation of Interventional Tools using Surrogate Keypoints
German Workshop on Medical Image Computing, pp. 292–298
Bashkanov, O., Meyer, A., Schindele, D., Schostak, M., Toennies, K., Hansen, C., Rak, M. (2021)
Learning Multi-Modal Volumetric Prostate Registration with Weak Inter-Subject Spatial Correspondence
Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), Nice, France, pp. 1817-1821
Gulamhussene, G., Joeres, F., Rak, M., Pech, M., Hansen, C. (2020)
4D MRI: Robust Sorting of Free Breathing MRI Slices for use in Interventional Settings
PLOS ONE, 15(6), pp. e0235175
Download test data set 
Wei, W., Rak, M., Alpers, J., Hansen, C. (2020)
Towards Fully Automatic 2D US to 3D CT/MR Registration: A novel Segmentation-Based Strategy
Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), Iowa City, Iowa, USA, in print
Ernst, P., Hille, G., Hansen, C., Toennies, K., Rak, M. (2019)
A CNN-Based Framework for Statistical Assessment of Spinal Shape and Curvature in Whole-Body MRI Images of Large Populations
Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Shenzhen, China, pp. 3-11
Rak, M., Steffen, J., Meyer, A., Hansen, C., Toennies, K. (2019)
Combining Convolutional Neural Networks and Star Convex Cuts for Fast Whole Spine Vertebra Segmentation in MRI
Computer Methods and Programs in Biomedicine, 177, pp. 47-56
Meyer, A., Rak, M., Schindele, D., Blaschke, S., Schostak, M., Fedorov, A., Hansen, C. (2019)
Towards Patient-Individual PI-RADS v2 Sector Map: CNN for Automatic Segmentation of Prostatic Zones from T2-Weighted MRI
Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI 2019) , Venice, Italy , 696-700
Wei, W., Xu, H., Alpers, J., Tinabao, Z., Wang, L., Rak, M., Hansen, C. (2019)
Fast Registration for Liver Motion Compensation in Ultrasound-guided Navigation
Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI 2019) , Venice, Italy , pp. 1132-1136
Meyer, A., Ghosh, S., Schindele, D., Schostak, M., Stober, S., Hansen, C., Rak, M. (2021)
Uncertainty-Aware Temporal Self-Learning (UATS): Semi-Supervised Learning for Segmentation of Prostate Zones and Beyond
Artificial Intelligence in Medicine, 116, pp. 102073
Schindele, D., Meyer, A., Von Reibnitz, D. F., Kiesswetter, V., Schostak, M., Rak, M., Hansen, C. (2020)
High Resolution Prostate Segmentations for the ProstateX-Challenge [Data set]
The Cancer Imaging Archive,
Meyer, A., Mehrtash, A., Rak, M., Schindele, S., Schostak, M., Tempany, C., Kapur, T., Abolmaesumi, P., Fedorov, A., Hansen, C. (2018)
Automatic High Resolution Segmentation of the Prostate from Multi-Planar MRI
Proceedings of IEEE International Symposium on Biomedical Imaging, Washington, D.C., USA, pp. 177-181
Meyer, A., Schindele, D., von Reibnitz, D., Rak, M., Schostak, M., Hansen, C. (2020)
PROSTATEx Zone Segmentations [Data set]
The Cancer Imaging Archive,
Meyer, A., Chlebus, G., Rak, M., Schindele, D., Schostak, M., van Ginneken, B., Schenk, A., Meine, H., Hahn, H.K., Schreiber, A., Hansen, C. (2020)
Anisotropic 3D Multi-Stream CNN for Accurate Prostate Segmentation from Multi-Planar MRI
Computer Methods and Programs in Biomedicine, accepted
Download test data set