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ABSTRACT

Automatic segmentation of the prostate, its inner and surrounding
structures is highly desired for various applications. Several works
have been presented for segmentation of anatomical zones of the
prostate that are limited to the transition and peripheral zone. Fol-
lowing the spatial division according to the PI-RADS v2 sector map,
we present a multi-class segmentation method that additionally tar-
gets the anterior fibromuscular stroma and distal prostatic urethra to
improve computer-aided detection methods and enable a more pre-
cise therapy planning. We propose a multi-class segmentation with
an anisotropic convolutional neural network that generates a topo-
logically correct division of the prostate into these four structures.
We evaluated our method on a dataset of T2-weighted axial MRI
scans (n=98 subjects) and obtained results in the range of inter-rater
variability for the majority of the zones.
Preprint version of the author. This work has been submitted to the
IEEE for possible publication. Copyright may be transferred without
notice, after which this version may no longer be accessible.

Index Terms— MRI, prostate zone segmentation, PI-RADS v2
sector map, deep convolutional neural networks, therapy planning,
computer-aided diagnosis

1. INTRODUCTION

Multiparametric MRI is gaining increasing importance in support-
ing the diagnosis, localization and therapy planning of prostate
cancer (PCa). For the purpose of standardizing this process, Prostate
Imaging - Reporting and Data System version 2 (PI-RADS v2) [1]
was developed to give guidelines for MRI protocols, interpretation
and lesion detection. PI-RADS v2 interpretation takes into account
the anatomical zones of the prostate introduced by McNeal [2]
who partitioned the prostate into four anatomical zones: periph-
eral zone (PZ), anterior fibromuscular stroma (AFS), transition
zone (TZ) and central zone (CZ). Depending on whether the lesion
is located in TZ or PZ, different MRI modalities are majorly used
for assigning a PI-RADS score.
In this work we investigate a method based on convolutional neural
networks (CNNs) for the automatic and simultaneous segmentation
of PZ, TZ, AFS and distal prostatic urethra (DPU) from T2-weighted
(T2w) MR images (see Fig. 1). The choice for these zones is based
on the PI-RADS v2 sector map that should allow for better com-
munication of lesion locations by employing various sectors for the
prostate, urethral sphincter and seminal vesicles. A reliable auto-
matic segmentation of the structures can improve the consistency
of lesion location assignment and reduce cognitive workload for

Fig. 1. Anatomical division of the prostate into PZ, TZ, AFS and
DPU. Illustration recreated according to [1].

clinicians [3]. Moreover, automatic segmentation of PZ and TZ
will enable better repeatability for longitudinal studies [4] and will
provide valuable information for computer-aided diagnosis systems,
specifically for clinical significance classification of lesions [5].
Next to PZ and TZ, AFS and DPU are relevant for planning of PCa
treatment, for example resection, radiation dose and focal therapy.
As these four structures are all located to some extent in the prostate
gland, we propose to segment them simultaneously in a multi-label
fashion. CZ is not considered in this work as it is not distinguishable
in most cases and has furthermore no effect on the PI-RADS v2
score. Here, we consider TZ as combination of TZ and CZ, also
known as central gland.
Various segmentation algorithms for the whole prostate have been

presented in the past, varying from deformable models to atlas-
based segmentation, machine learning approaches and hybrids of
these methods. An overview on these algorithms can be found in [6].
As the prostate has high variability in shape and appearance, con-
volutional neural networks (CNNs) that can better cope with these
problems, gained popularity for segmentation. Variants of the 2D
U-Net that was developed by Ronneberger et al. [7] are frequently
used as in [8, 9].
Similarly, zonal segmentation of the prostate has been performed
with deformable models, atlas-based segmentation and machine
learning. Several of these approaches use multiparametric MRI
[10, 11, 12]. The first work that inputs only T2w MRI was proposed



by Toth et al. [13] who used multiple coupled levelsets for incorpo-
rating shape and appearance information into the algorithm. Qiu et
al. [14] take into account spatial region consistency of the zones and
case-dependent appearance after the user initialized the method with
prostate boundary points. Chilali et al. [15] performed segmentation
by use of atlas images and evidential C-Means clustering.
So far, there exist only two approaches that integrate CNNs into
the segmentation of zonal anatomy: Clark et al. [12] proposed an
architecture with four consecutive 2D CNNs. The networks are re-
sponsible for detection and consecutive segmentation of the prostate
in a first and second step which is followed by detection and seg-
mentation of the TZ in a third and fourth step. The second work
by Mooj et al. [16] segments the TZ and PZ by means of a U-Net
based architecture that takes into account the anisotropic resolution
of MRI scans: instead of overall 3D convolutions and 3D MaxPool-
ings, the authors employ 2D convolutions and 2D MaxPooling in
the high resolution directions and only use 3D architecture in the
last resolution layer.
In the following section, we propose a 3D U-Net variant that also
takes only the highly anisotropic axial T2w images into account
and generates a gap-free segmentation of prostatic zones for therapy
planning and computer aided diagnosis. Including only T2w images
has the advantage that we need less resources and that we do not
have to coregister other sequences. Previous works on automatic
zonal segmentation have been limited to TZ and PZ. Our segmenta-
tion additionally targets DPU and AFS that are important structures
for therapy planning. To the best of our knowledge, we are the
first to incorporate these structures for automatic segmentation in
MRI. We evaluate our network’s output with manual segmentations
from three different experts and compare the results with inter-rater
variability of the three experts. As an additional contribution, the
ground truth data is released publicly for other researchers.1

2. METHOD

Due to the inhomogeneous appearance of the prostate and its inner
structures (see Fig. 3), CNNs were our choice of technique for zonal
segmentation. We propose to use a variant of the 3D U-Net [17]. In
the following we describe the network architecture and its training
as well as pre- and postprocessing.

2.1. Network Architecture

The U-Net and its three-dimensional variant consist of a contracting
encoder part and an expanding decoder part (see Fig. 2). The first
part analyses and downsamples the image to increase the receptive
field of the network while the expanding path synthesizes the filters
back to the input resolution and creates a segmentation. In the en-
coder part, the image is downsampled by means of three resolution
steps. Each layer in one resolution step consists of two 3 × 3 × 3
convolution filters with ReLU activation and a successive MaxPool-
ing operation. On the way down, the number of filters increases
from 16 for the first layer to 256 in the bottom layer. In contrast to
the original architecture, we used anisotropic 2× 2× 1 MaxPooling
to take the highly anisotropic input data into account. Only the last
MaxPooling is isotropic with 2 × 2 × 2. Similarly, the decoder path
with transposed convolution (3× 3× 3 kernel) employs a stride of 2
in each dimension for the first layer. It is followed by two 3 × 3 × 3
convolution layers with decreasing number of filters. With respect to
the anisotropic downsampling, we used transposed convolution with

1http://isgwww.cs.uni-magdeburg.de/cas/isbi2019

a stride of 2 × 2 × 1 for the last two decoder resolution steps. As in
the original architecture, we employed skip connections to transfer
high resolution information from the encoder path to the same level
of the synthesis path. Batch normalization after every convolution
was added for faster learning. As regularization, dropout with a rate
of 0.5 was included in the bottom most layer and in the decoding
layers. The last layer of the network is a 1 × 1 × 1 convolution
with softmax activation function and a resulting output of 5 chan-
nels: one each for TZ, PZ, DPU, AFS and background. Due to its
’winner-takes-it-all’-nature, the softmax function is optimal for cre-
ating a preferably non-overlapping multi-class segmentation.

2.2. Dataset and Preprocessing

The dataset used in this work consists of 98 T2w series selected ran-
domly from the publicly available SPIE-AAPM-NCI PROSTATEx
challenge dataset [18]. The images were acquired by two different
types of Siemens 3T MRI scanners (MAGNETOM Trio and Skyra)
with a body coil. The ground truth segmentation of the prostate
zones was created on the axial images with 3D Slicer [19] by a med-
ical student and subsequently corrected by an expert urologist. All
volumes were resampled to a spacing of 0.5 × 0.5 × 3 mm which
corresponds to the highest in-plane resolution and maintains the rela-
tion of in-plane to inter-plane resolution of the dataset. A bounding
box ROI of the prostate was automatically extracted with help of
sagittal and coronal T2w series: the ROI was defined as the inter-
secting volume of the three MR sequences. Prior to normalization of
image intensity to an interval of [0,1], the intensities were cropped
to the first and 99th percentile. For segmentation, only axial images
were considered. They were split into training (n=78) and test data
(n=20). The training data was augmented by random application of
the following transformations: left-right flipping, 3D rotation, scal-
ing and 3D translation. Instead of nearest neighbor interpolation, we
used a shape-based interpolation as proposed in [20] for the augmen-
tation which produced smoothly transformed segments. For evalu-
ating the inter-rater variability and the performance of the automatic
segmentation, a second test data ground truth was created by a sec-
ond expert urologist with the help of another medical student. Ad-
ditionally, a third expert segmentation was generated by an assistant
radiologist (only 10 of the 20 test cases).

2.3. Network Training

We trained our network with the negative Dice Similarity Coefficient
(DSC) loss function. For our multi-class segmentation, the loss func-
tion was:

loss = −
∑

z∈{TZ,PZ,DPU,AFS}

2
∑N

i pz,igz,i∑N
i p2z,i +

∑N
i g2z,i

with N being the total number of voxels and pz,i the predicted
voxels and gz,i the ground truth binary voxels of zone z. Adam
optimizer [21] with learning rate of 5e−05 was employed and the
network was trained for a maximum of 1000 epochs with learning
rate decay and with a batch size of 2 on a NVIDIA TitanX GPU.
The total number of trainable parameters for the proposed model
was 6,098,245. In a 4-fold cross validation, the optimal learning rate
schedule and number of training epochs was determined for a final
training run that included all of the 78 training volumes (approx. 60
hours training time and less than 1 second per image for prediction).



Fig. 2. Proposed anisotropic architecture of the network for zonal segmentation. Architecture is based on the 3D U-Net [17].

Table 1. Automatic and manual segmentation evaluation. Autom. is the presented network that considers anisotropy of the data. Autom. ISO
is the output of the original U-Net architecture that does not consider the anisotropy. Mean absolute symmetric distance (MAD) in mm.

TZ PZ DPU AFS
Comparison DSC MAD DSC MAD DSC MAD DSC MAD

Autom. vs. Expert1 87.6 ± 6.6 0.93 ± 0.32 79.8 ± 5.1 0.84 ± 0.50 75.2 ± 7.2 0.72 ± 0.34 41.1 ± 14.4 3.11 ± 2.06
Autom. ISO vs. Expert1 87.4 ± 6.3 0.97 ± 0.28 78.7 ± 5.0 0.88 ± 0.45 73.9 ± 8.2 0.70 ± 0.31 38.3 ± 15.0 3.22 ± 2.14

Autom. vs. Expert2 86.3 ± 6.9 1.08 ± 0.37 78.2 ± 3.8 1.00 ± 0.63 58.1 ± 8.9 1.51 ± 0.69 38.8 ± 16.5 3.54 ± 2.76
Expert1 vs. Expert2 87.8 ± 5.8 0.86 ± 0.31 81.8 ± 3.4 0.70 ± 0.35 60.6 ± 8.9 1.33 ± 0.49 51.0 ± 11.1 1.91 ± 1.10

Autom. vs. Expert3 81.7 ± 6.5 1.23 ± 0.25 77.5 ± 4.7 0.97 ± 0.60 61.5 ± 6.2 1.37 ± 0.52 33.0 ± 14.1 4.45 ± 2.38
Expert1 vs. Expert3 82.8 ± 5.7 1.07 ± 0.34 78.0 ± 5.4 1.02 ± 0.60 64.1 ± 4.9 1.26 ± 0.39 46.8 ± 15.1 2.42 ± 1.24

2.4. Postprocessing

As the segmentation output from the network may contain isolated
regions, we implemented connected components analysis and a
distance-based hole filling as postprocessing to guarantee topolog-
ical correctness. First, for every region a connected components
analysis was applied and only the largest component was kept. Vox-
els resulting in a label-free state after connected components were
now assigned a new label with:

max
z∈{TZ,PZ,DPU,AFS}

SDF (z)

with SDF (z) being a signed euclidean distance function that as-
signs positive values inside and negative values outside the segmen-
tation. Thus, every voxel that had label-free state, gets assigned to
the zone of the nearest labeled voxel according to the shape-based
distance measure.

3. RESULTS AND DISCUSSION

The performance of the presented model trained on 78 images was
tested on 20 images which were not considered for training. The
evaluation measures are the Dice similarity coefficient (DSC) and
mean absolute symmetric distance (MAD), computed as in [22].
Three example results and their corresponding manual segmenta-
tions from two experts are given in Fig. 3. The quantitative results
evaluated against the different experts can be found in Tab. 1. The
first row represents the comparison of the proposed anisotropic au-
tomatic segmentation with the expert, who also created the manual
segmentations for training. TZ obtains a DSC of 87.6%, PZ achieves
a DSC of 79.8% and DPU and AFS result in DSCs of 75.2% and
41.1% respectively. A comparison of these results with those from
the isotropic standard network (second row) indicates an improve-
ment of segmentation outcome for PZ, DPU and AFS by employing
our anisotropic network. Wilcoxin signed rank p-test resulted in a

p-value of 0.015 for PZ. For the other zones no statistical evidence
could be gained due to the small test sample size.
Furthermore, Tab. 1 shows the evaluation metrics obtained by com-
paring segmentations generated by different experts. Our results for
TZ and PZ are in the range of inter-rater variability (compared to the
fouth and sixth row). On DPU, our method is even better than the
inter-rater difference due to deviation of the experts segmentation in
diameter and proximal length. The DSC for the inter-rater compari-
son of the AFS are 51.0% and 46.7%. Hence, unlike the other zones,
the manual segmentations for the AFS are considerably better than
the automatic performance.
Smaller volumes generally have the tendency to obtain lower accu-
racy for region-based measures (e.g. DSC) because smaller errors
have a larger weight on the overall measure. Consequently, it is not
surprising that DPU and AFS obtained worse results than TZ and
PZ. Distance-based measures such as MAD show that the quality
of automatic DPU segmentation is still good. On the other hand, re-
garding the AFS, our method needs improvement. The high standard
variance demonstrates that some cases are nearly as good as manual
segmentations but many cases are not. The clinicians confirmed that
the AFS is the most difficult structure to segment as boundaries are
not clearly visible for a large part and the structure has high vari-
ety of shape and appearance. Thus, even the inter-rater variability is
very high. We also expect the intra-rater variability to be high, but
need to confirm this with further experiments in future work.
Another information we can extract from Tab. 1 is the higher accu-
racy of automatic segmentations compared to the expert who created
the training data (Expert1) in contrast to accuracy evaluated against
other expert segmentations. This demonstrates the bias that is intro-
duced into the training data by only including segmentations from
one clinician. For better performing models, one needs to include
more clinicians into the data generation process. We assume that
this could improve the segmentation outcome of the AFS, too, as in
such a case the manual segmentations may be more consistent.



Fig. 3. Examples for predicted and manual segmentations of PZ (purple), TZ (green), AFS (blue) and DPU (brown). Worst (1), mean (2) and
best (3) automatic segmentation result according to DSC sum over all zones. Segmentations were upsampled for visualization purposes.

Fig. 4. Effect of number of training samples on test accuracy for the four zones: mean and standard deviation (µ and ±σ) of Dice Coefficient.

Fig. 4 illustrates the effect that the increasing amount of training
data has on the performance regarding the DSC. While the experi-
ment suggests that increasing the number of training samples above
the actual size will most probably not improve the accuracy and stan-
dard deviation of the TZ, PZ and DPU, we can expect that this might
improve results for AFS regarding its accuracy and stability.
A comparison of previous and current works on segmentation of pe-
ripheral and transition zone is given in Tab. 2. Semi-automatic ap-
proaches take as additional input either a manual segmentation of the
whole prostate gland ([11, 10]) or points on the prostate boundary
to provide information about the shape and location of the examined
prostate ([14]). The interactive work from Lijtens et al. [11] achieves
a DSC of 89.0 and is the best performing algorithm, followed by our
proposed automatic method. For the PZ, our method performs best.
Of course, while making these comparisons, one has to take into ac-
count the different datasets that were used, that varied for example
in included modalities and acquisition protocols. A comparison of
the AFS and DPU segmentation to other works can not be made as
no previous studies on the automatic segmentation of these exist.

4. CONCLUSION

This work presents a method to generate topologically correct seg-
mentations of the TZ, PZ, DPU and AFS from axial T2w MRI. To
the best of our knowledge, we are the first to address simultane-
ous segmentation of these four structures in an attempt to reproduce
the anatomical prostate division according to the PI-RADS v2 sec-
tor map in a patient-specific manner. The presented method has the
potential to improve reproducible lesion localization as well as to
conduct more precise and faster therapy planning. A further contri-
bution of our work is the ground truth data (n=98), which will be
made available for other researchers after manuscript publication.

An extensive evaluation has been undertaken to estimate inter-rater
errors in manual segmentation of the zones and to compare them
with the automatic results. The outcome indicated that TZ, PZ and
DPU segmentations could be obtained by our method with accuracy
that is in the range of inter-rater variability. On the other hand, we
observed that the U-Net structure seems to be not as appropriate for
the AFS as for the other structures. Thus, future work may include
the exploration of other techniques such as, for example, a multi-
planar approach or generative adversarial models that could make
the postprocessing step redundant. Improvement of the results can
be expected if more training data is used and if more experts take
part in the training data generation process. Future work will addi-
tionally incorporate the transformation of the zones into a patient-
specific sector map and other risk structures.
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