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ABSTRACT

2D-US to 3D-CT/MR registration is a crucial module dur-
ing minimally invasive ultrasound-guided liver tumor abla-
tions. Many modern registration methods still require manual
or semi-automatic slice pose initialization due to insufficient
robustness of automatic methods. The state-of-the-art re-
gression networks do not work well for liver 2D US to 3D
CT/MR registration because of the tremendous inter-patient
variability of the liver anatomy. To address this unsolved
problem, we propose a deep learning network pipeline which
– instead of a regression – starts with a classification network
to recognize the coarse ultrasound transducer pose followed
by a segmentation network to detect the target plane of the
US image in the CT/MR volume. The rigid registration result
is derived using plane regression. In contrast to the state-of-
the-art regression networks, we do not estimate registration
parameters from multi-modal images directly, but rather fo-
cus on segmenting the target slice plane in the volume. The
experiments reveal that this novel registration strategy can
identify the initial slice phase in a 3D volume more reliably
than the standard regression-based techniques. The proposed
method was evaluated with 1035 US images from 52 pa-
tients. We achieved angle and distance errors of 12.7± 6.2◦

and 4.9± 3.1 mm, clearly outperforming state-of-the-art re-
gression strategy which results in 37.0± 15.6◦ angle error
and 19.0± 11.6 mm distance error.

Index Terms— US, CT/MR, Registration

1. INTRODUCTION

Liver tumor ablation techniques have been widely used to
handle liver metastases [1]. Ultrasound (US) is the most of-
ten used device because of its real-time capability to guide
the surgeon during a liver intervention. However, due to the
limited image quality, US images need to be aligned with pre-
operative planning data, e.g., computed tomography (CT) im-
ages or magnetic resonance (MR) images, to provide better
decision support during interventions. The most important
module in this context is pre- and intraoperative image reg-
istration, which can align high-quality CT/MR images with
intraoperative low quality US images.

To address this registration task, [2] suggest performing

registration based on 3D US reconstruction. This method
requires patient breath-holding, liver swiping with a tracked
US transducer, and performing 3D reconstruction from 2D
US slices. Despite the high registration accuracy, this method
adds inconvenient steps to the standard intervention proce-
dure. Furthermore, once the patient breath is recovered, the
obtained transformation matrix becomes invalid. In [3], a
rigid slice to volume registration is proposed as a graph la-
beling problem achieving promising results on beating heart
magnetic resonance (MR) images. Alternatively, [4] pro-
posed a one-step deformable iterative closest point method
to align a set of 2D curves in the 2D transvaginal ultrasound
(TVUS) image to a set of corresponding 3D surfaces in the
3D MR volume. Despite the high accuracy, the method needs
manual organ segmentation for both TVUS and MR images
and therefore can not be applied in interventional procedures.

Recently, deep learning has been applied for image regis-
tration. For instance, in [5, 6] convolutional neural networks
(CNNs) are proposed to learn a similarity metric from multi-
ple modality image patches to guide the registration process.
Generative adversarial networks were used by [7, 8] to predict
deformation fields in the context of non-rigid image registra-
tion. Deep reinforcement learning was explored by [9, 10] to
solve the registration task with state-of-the-art performance.
Other researchers [11, 12] show the possibility to solve regis-
tration via a regression network. First, they applied CNNs to
extract features from input patches and then use a dense net-
work for pose estimation. This idea was extended by [13, 14]
to address the 2D-3D image registration problem. The regres-
sion method learns the relation between slice pose and 3D
image according to the appearance of the 2D slice. However,
this does not work well as liver anatomy varies tremendously
in shape, volume, vessel structures, and others.

In this work, we propose a registration pipeline, which
can determine a coarse slice pose via a classification network
followed by a segmentation network to extract the target slice
from the 3D volume. The latter was inspired by [15], who was
among the first to formulate a classical regression problem as
a segmentation task. In contrast to the state-of-the-art, our
method intends to solve the crucial registration task by train-
ing a deep segmentation network to circumvent the robustness
issues that arise with regression networks. To the best of our
knowledge, this is the first deep learning method applying a



segmentation network to solve the initial plane estimation of
2D US slice to 3D CT/MR volume registration problem.

2. MATERIALS AND METHODS

Multi-modal slice to volume registration is a very challenging
task. Not only the different image appearances between the
US and CT/MR but also the little information available in the
US image can make the registration even more difficult and
ambiguous. In addition, registration must keep spacial struc-
tures, such as the relative pose of voxels. Hence, we choose
CNN as the baseline for our registration pipeline.

2.1. Problem formulation

The registration process can be divided into two parts con-
sisting of a static and a dynamic registration. In the static
registration stage, we determine the coarse US slice pose in
the 3D volume by extracting a point-direction representation
for the slice. In the dynamic registration stage, breath motion,
in-plane rotation, and translation can be optimized in a local
Region of Interest (ROI) as described in many publications
[16, 17]. Within this work, we focus on the static stage.

Regarding the static registration stage, a deep learning
registration pipeline is proposed. As shown in Figure 1, the
pipeline contains two parts: pose classification and plane es-
timation. The output is represented by a point ~p inside a plane
and a normal vector ~n perpendicular to that plane.

2.2. Pose classification

In liver US examination, there are two standard scan posi-
tions: medial and transcostal (see Figure 2). The medial posi-
tion is often used to examine the left lobe of the liver, hepatic
vein, left branch of the portal vein, and vena cava. On the
other side, the transcostal position can examine the right lobe
of the liver and the first bifurcation of the portal vein.

To analyze the distribution of the US transducer orienta-
tion of these two classes, 132 and 122 US images were ran-
domly selected from the transcostal position class and medial
position class of training data, respectively. For each image,
field experts performed slice to volume registration manually.
The rotation parts of registration matrices are converted to Eu-
ler angles. Figure 3 shows the distribution of slice orientations
in Euler angle representation. As shown, the distribution of
transducer orientations divides clearly into two classes. This
separation inspired us to solve the coarse transducer orienta-
tion estimation by classifying the US image into one of those
two orientation classes.

Once the classification is completed, we can take the av-
erage orientation from each class as a coarse orientation to
initialize our segmentation-based plane estimation network.
The pose classification is implemented in Tensorflow using a
ResNet18 architecture [18]. The loss is defined by softmax

cross-entropy between predictions and the true pose class. As
output, the average transducer pose of the predicted pose class
is passed through the resample block (see Figure 1) to initial-
ize the orientation of the CT/MR volume correctly.

2.3. Plane estimation

After rotation resampling of the CT/MR volume, the US
slice should be as parallel as possible to the XY plane of the
CT/MR volume. In multi-modal image registration, images
acquired by different devices may vary a lot in content and
appearance. Therefore, the registration shall focus on ves-
sel structures that are available in pre-operative 3D CT/MR
images and 2D US images, as well. Vessel structures of
3D CT/MR volume can be prepared via manual or semi-
automatic segmentation tools. A U-Net-based pre-processing
step [17] is applied to extract vessel structures from each
US slice, which is then used for registration. Afterward, the
pre-processed US slice is replicated along the Z direction,
i.e., slice normal vector, to match the size of the resampled
CT/MR volume (see block ”Replicator” in Figure 1).

To address the actual plane detection, a 3D U-Net is im-
plemented in Tensorflow. Our network takes the vessel fea-
ture maps of the 3D CT/MR, and the replicated US slices as
input and outputs a segmentation of a plane corresponding to
the actual position of the US slice w.r.t. the CT/MR volume.
The network is trained via a modified DICE loss between the
predicted segmentation and the ground truth segmentation on
the US slice position in the CT/MR volume. The DICE coeffi-
cient (see Equation 1) is based on the loss function introduced
by [19], where A and B depict ground truth and prediction, re-
spectively. In addition, we add a new false positive term on
the denominator, which aims at reducing false-positive pre-
dictions. Coefficients α = 0.8 and β = 0.2 are employed to
balance the original DICE and the false-positive term.

DICE =
2 ∗

∑
|A ∗B|

α ∗ (
∑
A2 +

∑
B2) + β ∗

∑
(1−A) ∗B

(1)

Once the prediction is finished, the slice plane can be ex-
tracted robustly by the least trimmed squares plane regression
method (see the last step ”Plane Regression” in Figure 1) [20].

3. EVALUATION

Image data were acquired from 52 patients, approved by the
ethics committee at Sir Run Run Shaw Hospital, School of
Medicine, Zhejiang University. Twenty-eight patients were
examined with a US transducer on transcostal position, while
the other 24 patients were examined with US transducer on
medial position. In total, 1035 images were collected with
visible vessel structures. Ground truth was annotated manu-
ally by field experts. For each US image, ground truth con-
sists of the US pose class label and a transformation from a
slice image to the 3D volume. The splitting of image data



Fig. 1. Static registration: a pipeline to perform automatic slice plane estimation in 3D volume data.

Fig. 2. Examplary US slices captured in medial (left column)
and transcostal position (right column).

is 10:2:1 for training, validation, and testing, respectively.
812 training and 164 validation images were selected to train
the ResNet18 and 3D U-Net. Training and testing of the
ResNet18 network were performed with US images down-
scaled to 128×128. The ResNet18 network was trained with
a learning rate of 0.1 and a batch size of 256. During the
evaluation of 3D U-Net, we downscaled all 3D images to
40×40×40 voxels with a spacing of 4 mm. Training parame-
ters were set to a batch size of 40, batch normalization, learn
rate of 0.0003, and filter size of 3×3×3. Adam optimizer
was applied to minimize the loss function. In the training
phase, we applied resliced 2D vessel images out of CT/MR
volume data instead of using US vessel images directly. This
generates more training slices and prevents overfitting during
training. Data augmentation was performed to prepare those
slice images by varying slice pose using a random rotation of
[-20, 20]◦ and random translation of [-20, 20] mm. The train-
ing was done with 700 epochs, while the testing was done
with the remaining 85 images. Both training and testing were
performed on an NVIDIA Geforce GTX 1080Ti.

Fig. 3. Euler angle distribution of transcostal and medial po-
sition in the volume coordinate system. Left: projection on
the pitch-yaw plane. Right: projection on the yaw-roll plane.

3.1. Results

Experimental results in Figure 4 depicts a promising classi-
fication with areas under the receiver operation characteristic
(ROC) curve being equal to 0.99. The class label with the
maximal probability is assigned to the US image. As a result,
the experiments show a classification accuracy of 96.3 %.

Fig. 4. ROC-curve for the classification of US images.

The 3D U-Net achieved an average DICE score of 0.61
between ground truth and prediction volume. To evaluate the



performance of plane estimation, we calculate the accuracy
of the plane estimation by considering the angle between the
estimated and ground-truth plane (out-plane rotation error).
In addition, we calculate the average distance between ves-
sel voxels in the ground truth and prediction plane (distance
error). The plane estimation results in Figure 5 show a sig-
nificant error reduction comparing angle errors directly after
pose classification and after plane estimation. Specifically,
the angle error is reduced from 20.8± 8.5◦ to 12.7± 6.2◦. As
shown in the left column of Figure 5, the angle error of the
estimated plane is positively proportional to the initial pose
give by the pose classification network. The dashed line in
Figure 5 divides the results into two groups: successful reg-
istration and failed registration. The points under the dashed
line show successful registrations where angle errors are re-
duced, and estimated plane poses are improved. While the
points above the dash line show failed registrations, yielding
worse angle errors. Those failed registrations were caused by
little visibility of vessel structures available in the US images.
The experiments show a successful registration rate of 82.8%.

Fig. 5. Comparison of angle error after pose classification and
after plane estimation.

Fig. 6. Comparison of the proposed method and the SVR-
Deep method. Left: Angle error; Right: Distance error.

For comparison, we implemented the state-of-the-art deep
regression SVR-Deep [14] and evaluated with the same image
data. As shown in Figure 6, the proposed method achieves
an orientation accuracy of 12.7± 6.2◦, outperforming the
SVR-Deep method resulting in 37.0± 15.6◦. Also, the pro-
posed method achieves a distance error of 4.9± 3.1 mm to the
ground truth plane, significantly better than 19.0± 11.6 mm
of the SVR-Deep method. The best and the worst visual
results of the registration are shown in Figure 7. The slice
to volume transformation is calculated using the proposed
method to determine out-plane parameters followed by man-
ual corrections on in-plane parameters.

Fig. 7. Visualization of registration results with overlay of
resliced vessel tree on the US image. Left image pair: The
best case. Right image pair: The worst case.

4. CONCLUSION

In this work, we propose a novel deep learning-based reg-
istration pipeline, which estimates the initial pose of a US
slice before the fine registration and motion compensation.
The evaluation results show an orientation and distance errors
of 12.7± 6.2◦, and 4.9± 3.1 mm, respectively. This result is
promising as an initial pose for the fine registration methods.
Moreover, the experiments show that our method outperforms
state-of-the-art regression-based deep learning methods.

The performance of our method depends on the visibil-
ity of the vessels. All the US images involved in this evalua-
tion are selected automatically, such that least 1 % of a typical
liver area is covered. This restriction is reasonable, not only
because vessel structures can help to increase the registration
accuracy, but more importantly, according to the clinical feed-
back, only complex cases where tumors are surrounded by
vessels need guidance in the intervention procedure.

The prediction results of our pipeline can be used further
as initial poses in the dynamic registration step, where the re-
sult is adapted to in-plane motion from breathing. In addition,
further experiments shall be made on more challenge data and
even with other organs.
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